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Since the 1950s, the hippocampal formation has been implicated 
in functions from episodic memory to spatial and abstract 
cognition1–5. Neuroscientists have attempted to characterize, 

and provide normative explanations for, the neural representations 
that support these functions. This has been particularly fruitful in 
the spatial domain, where several cell types, including hippocampal 
place cells and entorhinal grid cells, provide a neural instantiation of 
Tolman’s (and Turner’s) cognitive map3,4,6,7 (Fig. 1a).

Cognitive maps were proposed as internal neural representa-
tions that enable flexible behavior, such as planning routes or taking 
novel shortcuts6–8. More recent descriptions formalized the funda-
mental role of cognitive maps as organizing knowledge for gener-
alization2,3,9 to enable the rapid inference from sparse observations 
that characterizes biological intelligence10. This relates to psycholo-
gists’ schemas11; mental frameworks for understanding new infor-
mation, and learning sets12; and learning common task rules, which 
enables faster learning in new tasks. These broad concepts encom-
pass domains from social to logical cognition6, but most neural evi-
dence for cognitive maps is from studies of space3,13.

Recent evidence, however, suggests parallels between spatial and 
nonspatial cognition9 (Fig. 1b). For instance, hippocampal place 
cells fire not only to locations in space but also to ‘location(s)’ in 
sound frequency14, value15 or sensory evidence space16. Similarly, 
a putative functional magnetic resonance imaging marker for the 
hexagonal firing patterns of entorhinal grid cells, developed for 
physical space17, is also found when animals are presented with 
stimuli that vary along two abstract dimensions (for example, neck 
and leg length of birds18, odors19, social hierarchies20, reward proba-
bility and value21). These parallels in representation suggest that the 
mechanism for constructing spatial cognitive maps is an instance 
of a general coding mechanism that is capable of building abstract 
cognitive maps covering any domain.

Understanding how the brain represents these different domains 
of cognition in the same way requires a formalism that connects 
physical and abstract space. Several hippocampal models have 
attempted to do this, but it is unclear how these models differ, what 
each model contributes and how they relate. In this Review, we 
organize these models into a clear ontology. This ontology reveals 
that to understand representations in the hippocampal formation, 
we need to understand how to model sequences—both individual 

sequences and the statistical structure of sequences. Many of the 
reviewed models are stated in the reinforcement learning (RL) 
framework. However, rather than learning from reinforcement, 
they learn from sensory (or state) predictions to make a good state 
representation; the RL (or graph) framework just provides conve-
nient mathematical forms. The models learn to turn a sequence 
of observations (with no rewards) into a useful representation for 
when rewards do come along later. This is exactly what O’Keefe and 
Nadel3 (and Tolman before them6) were proposing, and is one kind 
of latent learning. The ontology also reveals a common understand-
ing behind many existing cellular representations, and suggests new 
ways to understand hippocampal–cortical interactions. We end by 
discussing how these models may help to understand neural rep-
resentations of higher-order cognitive domains, such as language, 
logical operators and mathematics, thereby providing a pathway 
toward cognitive maps as Tolman envisaged: the basis of reasoning 
across all domains of cognition.

A recent review discussed similar ideas of learning structures 
from sequences22. Both ref. 22 and this Review say that the cortex 
and/or the hippocampus learns (potentially arbitrary topologies) 
from sequences, with continuous attractor networks involved in 
learning. We note some theoretical accounts of cognitive maps do 
not address representation learning23–25. Although these models 
provide mechanistic insights, we do not discuss them in detail.

The cognitive mapping problem
Cognitive maps organize knowledge to enable flexible behav-
ior3,6,9,26. Enabling behavior means cognitive maps must contain 
information relevant to behavioral tasks. Enabling flexibility means 
the map must enable new behaviors in the face of new challenges, 
and be built as fast as possible for any new world. The aim for cog-
nitive maps, then, is to learn as much as possible ahead of time, so 
that online learning and computations are minimized. To achieve 
this, neural representations of cognitive maps must satisfy certain 
requirements. Here we describe these computational considerations 
and the resulting models that have had many recent successes in 
predicting neuronal representations.

Reinforcement learning and planning. To enable success-
ful behavior, cognitive maps must represent state (that is, a  
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configuration of the world). Deciding when to turn while driving  
requires knowing how the road curves, where the steering  
wheel is, where other cars are, and what the road signs say. 
RL27 formalizes this concept: actions are taken based on the  
current world state (for example, turning right when the road 
bends right). Representing the entire world state is generally 
infeasible, as it can contain information along countless, and 

often task-irrelevant, dimensions. Not only is this problematic 
for representational capacity, it also impedes learning efficiency 
(switching cars shouldn’t require relearning how to drive). This 
‘curse of dimensionality’28 can be mitigated by appropriate state 
abstractions (for example, ignoring car colors). Learning, or  
attending to, an appropriate abstraction is a central issue of cogni-
tive mapping23,29,30.
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Fig. 1 | The cognitive mapping problem: generalization and latent states. a, When navigating naturalistic environments, a range of cell representations are 
found in the cognitive map of the hippocampal–entorhinal system. b, Recent evidence has implicated these same representations (top) in coding abstract 
or conceptual spaces (middle; for example, ‘bird space’18 or sound frequencies14), with subsequent theoretical accounts suggesting that a single coding 
mechanism underlies both physical and conceptual spaces (bottom)9,61,127: understanding how states of the world (for example, locations in physical/
bird space) relate to each other (for example, using graphs) of the world. c, Top, understanding the common abstraction among relational structures (for 
example, families and chess pieces) allows understanding of other structures (plant kingdom) in the same light. The abstraction requires the sensory 
particularities to be generalized over. Bottom, cell representations of the entorhinal cortex map relational spaces and generalize across environments 
(Envs. 1 and 2) more than hippocampal cells. d, Because the sensory world is aliased (the same observation can happen in different locations), 
representations must be latent (not a simple function of the current observation). Rodents exhibit latent state representations when they traverse two 
sensorially identical rooms43. Initially, an identical grid cell code represents both rooms, but as the animal realizes these two rooms are connected by a 
corridor, a global grid cell code predominates; the latent representations separate states with differing sensory futures. e, In a T-maze alternation task40, 
where rodents take alternating left and right turns, ‘splitter cell’ representations form (in addition to spatial place cells), which fire preferentially on left or 
right trials. These are nonspatial latent state representations, because they disambiguate the same spatial location (central trunk) depending on whether 
it is predicting ‘go left’ or ‘go right’. f, The aliasing problem in graphs: if states are represented just by observations, then the left graph is equivalent (shown 
via black arrow) to the right graph, thus the state-space of the left graph cannot be fully represented by observations alone. g, Sequence prediction tasks 
are sufficient to learn latent state representations, because identical observations can have different neighbors. Sensory sequences, and the associated 
actions, can come from both space and non-space (for example, families). Some sensory predictions can be done only by knowing (generalizing) certain 
rules; for example, North + East + South + West = 0 or Parent + Sibling + Niece = 0.
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Classic (model-free) RL learns the value of states, or which actions 
are good in which states, and therefore requires no knowledge of how 
states relate to each other. Although this is optimal in the long term31, 
value-based learning is often inflexible and slow to learn27. Knowing 
relationships between states (state-space structure) enables flexible 
planning between any start and goal state, for example, taking a new 
route home if the regular route is blocked32. Unfortunately, tradi-
tional planning mechanisms (for example, tree search) are compu-
tationally costly, although a clever representation of state-space (see 
below) can reduce the cost of planning, sometimes completely. This 
is a powerful way to formalize a central goal of cognitive maps: solv-
ing problems in representation, not by exhaustive computation.

Space as a state-space. To understand what this means, let’s consider 
physical space. Here, the state-space comprises physical locations  

like a literal map. This abstraction alone clearly profoundly helps 
the spatial planning problem. However, location can be represented 
in various ways; for example, by a unique identifier (A, B, C,…), 
or by x and y coordinates. The choice of representation has major 
consequences. First, consider finding the shortest routes. In the 
former, you must search through a series of neighbors. In the lat-
ter, you can simply compute a vector from start to end represen-
tations. Second, consider adding a new location. In the former, a 
new identifier (for example, a cell) is required along with new rela-
tionships (for example, synapses) to neighboring identifiers. In the 
latter, nothing new is required because (x, y) extends to new loca-
tions. These two representation types are analogous to place and 
grid cells; individual place cells encode unique locations, and new 
locations therefore require new place cells, whereas grid cells enable 
vector calculations33,34 and naturally extend to new locations (albeit  

Box 1: Reinforcement learning state-spaces, graphs and graph representations

The problem of building graphs for cognitive maps is the same 
problem as building state-spaces in RL. Crucially, the state-space 
in RL is tightly linked to behavior (through rewards, values and 
policies). However, once the state-space is defined there is a fur-
ther choice of how each state is actually represented. Clever choice 
of representation can reduce online value/policy computations. 
This has allowed normative mathematical theories to predict neu-
ral representations.

RL is concerned with taking appropriate actions at specific 
states (s) to maximize the expected (discounted by γ) sum of future 
rewards v (s) = E

[
r (s) + γr (s′) + γ2r (s′′) · · ·

]
, where s′ and s″ 

are states following s. Bellman28 realized that this is a recursive 
equation, as the right-hand side contains the left-hand side but 
one step in the future: v (s) = r (s) + γ

∑
t P (s′ | s, π) v (s′), where 

P (st+1 | st, π) is the transition probabilities between states under 
a policy π. In essence, Bellman’s equation says the value of the 
current state is the reward at that state plus the average value of 
states you can transition to. If you can assign credit to each state 
(like these equations do), then taking good actions is easy: just go 
to the neighboring state with the highest value v(s′).

RL state-spaces define graphs with transition matrix elements 
Tij = P

(
sj | si, π

)
. One graph representation, the sucessor 

representation (SR)129 (see the figure), is particularly relevant 
to cognitive maps36,37. The SR is a (discounted) sum of n-step 
transition matrices; S =

∑
n γnTn. Elements of this matrix, 

Sij, describe connectedness via all possible paths between two 

locations. Critically, if we represent connections between states in 
the world in terms of the SR distance, then computing the value is 
easy, as the SR is one-half of the value computation129 (v = Sr where 
v and r are vectors whose elements are values and reward at each 
state, respectively).

Stachenfeld and colleagues37 noticed that the columns of S look 
like hippocampal place cells (see the figure, center), and that some 
eigenvectors of S resemble entorhinal grid cells (see the figure, right; 
cell thresholded at zero), similarly to work demonstrating that some 
eigenvectors of place cell covariance matrices resemble grid cells79. 
Notably, SR makes many predictions about how both grid and place 
cells behave in different environments and tasks37,130–132. Critically, it 
also makes predictions of representations in nonspatial tasks37,133,134. 
Because it derives from a theory of learning, it can also account for 
behavioral phenomena that are otherwise hard to explain94.

One prominent issue with SR, however, is its policy 
dependence135. This means that when rewards move, or, worse, 
when obstacles appear, value calculations using SR are no longer 
optimal135. A recent model addresses this problem38 using linear 
RL136. This model builds a default representation (DR) for 
default behaviors that can be linearly updated when rewards 
change to approximate the new optimal policy. The required DR 
resembles the SR, and can therefore be computed from grids 
cells. The model further provides a new account of how to build 
world representations compositionally out of component cells 
representations (for example, how grid and border cells interact to 
represent the insertion of a barrier)62. We return to this important 
issue in Box 4 and related text.
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periodically). By a clever choice of representation, grid cells abolish 
the need for computation.

Nonspatial state-spaces. Although it is easy to intuit good 
state-spaces in physical space, it is harder in non-space. One 
approach, derived from RL35,36, is to cast spatial learning as under-
standing relationships on a graph (Fig. 1b). In space, nodes of a 
graph define physical locations, and so edges between nodes exist 
if two locations are directly connected. Importantly, graphs also 
formalize nonspatial problems (Fig. 1b,c). Family trees, social net-
works and atoms in molecules, all consist of relationships between 
entities and can be represented with graphs. Nodes in the graph thus 
represent nonspatial locations, for example, Alice is Bob’s grandpar-
ent in a family tree.

Graphs define state-spaces and so enable value-based RL (Box 
1). They also enable planning: starting with Bob (characterized by 
a vector v with all elements set as zeros except for the Bob node  

element whose value is 1; each person/state/node is defined by 
another vector element), and multiplying v by T (Tv; T is the tran-
sition matrix, where Tij is the transition probability from state j to 
i), gives a distribution over future states (people) after one step. 
Similarly, multiplying again by T (T2v) gives the distribution after 
two steps. Repeating this process until a nonzero entry appears in 
Alice’s node provides the shortest path between Bob and Alice (two, 
because Alice is Bob’s grandparent).

Several graph-based models of the hippocampal formation have 
been proposed37,38, and, intriguingly, their representations of space 
resemble place and grid cells (Box 1).

Latent states and sequence learning. Graphs can flexibly represent 
problems, but how do we know which graphs to build? What defines 
each graph node, or each state in an RL problem? Sensory observa-
tions cannot define states, as two identical observations can exist 
in different locations (aliasing) with very different consequences; 

Box 2: Building latent state representations from sequences

State-spaces must be inferred from observations. Because the 
sensory world is aliased—the same observation can occur more 
than once—states cannot be inferred from sensory appearance 
alone. Instead, sequences of observations uniquely identify states 
because two states with the same sensory observation will have 
different futures. States inferred via sequences are known as latent 
states, and building a latent state-space map can be used to enable 
different behaviors in sensorially identical situations.

The clone structured cognitive graph (CSCG) model74 is an 
elegant approach for building de-aliased state-spaces. Here, the 
hippocampus contains multiple ‘clone’ cells for each sensory 
observation74,137. Now, one hippocampal ‘frog’ clone cell responds 
to a frog in one location, and another responds if a frog appears 
elsewhere (see the figure). The model uses Bayes to (1) infer 
which hippocampal clone cells should be active for each sensory 
observation and (2) learn an appropriate set of transition weights 
between clone cells. These transition weights are analogous to 
the transition matrix for graphs, but critically the state-space is 
learned, rather than provided by the modeler.

Many hippocampal findings can be understood in terms of 
representing latent states, from basic phenomena, such as place 
cells, through to complex representations which vary as a function 
of animal behavior. These predictions are in common between the 
CSCG model and more complicated models that follow, and we 
show a number of these in detail in Fig. 2. A critical difference 
between CSCG and the following models is that CSCG infers the 
entire latent space within the hippocampus (as opposed to the 
cortical input to the hippocampus). This enables learning rules to 
be local, biologically plausible and fast. However, the CSCG model 
has to learn each map de novo and cannot benefit from having 

learnt similar maps before. It is exciting to think how these benefits 
may be combined (‘Complementary maps in hippocampus and 
cortex’; Fig. 3b).

CSCG is easily expressed in mathematics, and is closely related to 
hidden Markov models. From a sequence of sensory observations 
X = {x1, x2, x3, · · · , xT} and actions A = {a1, a2, a3, · · · , aT}, 
we infer discrete latent states Z = {z1, z2, z3, · · · , zT}. Now, the 
same sensory observation, x, can be linked to different latent 
states (clones) z, via an ‘emission’ distribution p(x|z), naturally 
accounting for the aliasing problem. Along with predicting 
sensory observations, CSCG latent states predict future latent 
states and actions p (zt, at | zt−1). Modeling the full sequence of 
observation is then:

p (X,Z,A) = p (z0)
∏

t
p (xt | zt) p (zt, at | zt−1)

Here, each element of z, zi, is a ‘clone’ of a sensory observation 
(see the figure); note that we use t for vectors in time and i for 
indexing elements of each vector. Concretely, if there are 4 
possible sensory observations, and 5 clones for each observation, 
there will be 20 elements to z. The probability of observing 
a ‘frog’ given a ‘frog clone’ is defined as 1, but 0 given a ‘snail 
clone’; p (x | zi ∈ C (x)) = 1 whereas p (x | zi /∈ C (x)) = 0 if 
C(x) are the clones of x. CSCG marginalizes over z and uses the 
expectation–maximization algorithm to train the model138, that is, 
learn an appropriate set of transition probabilities p (zt, at | zt−1) 
and infer zt. Once trained, this model can be used for planning by 
inferring a sequence of actions and observations conditioned on a 
start and end clone.
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crossing a road implies looking right in the United Kingdom, 
but left in Germany. Formally, our world is not ‘fully observable’; 
instead, we face ‘partially observable’ problems and must infer latent 
state26,29 representations that disambiguate UK and German roads. 
Although single observations are not enough to infer latent state 
representations (Fig. 1f), sequences of observations are, because 
identical observations do not have identical surroundings (for 
example, having earlier eaten Bratwurst might trigger you to look 
left when crossing a road).

Indeed, the hippocampal formation learns from sequences and 
its neural representations disambiguate states using latent repre-
sentations16,39–45. For example, rodent grid cells initially code two 
identical boxes identically. However, when the animal realizes the 
boxes are connected by a corridor, the grid representation changes 
to represent the global two-box-and-corridor space43 (Fig. 1d). This 
latent state representation disambiguates sensory aliased boxes due 
to their different futures. Physical location can also be aliased; in 
spatial alternation tasks40,41 (Fig. 1e), the same physical position (for 

example, the central ‘trunk’) predicts different futures depending on 
the animal’s previous left/right choice. Splitter cells40,41, place cells42, 
grid cells43 and lap cells45 are all examples of the cognitive map dis-
ambiguating the world into latent states.

When graphs are given the capacity to learn and infer latent 
states from sequences, they begin to predict many of the latent state 
cells described above, for example, via the clone-structured cogni-
tive graph (CSCG) model (Box 2).

Path integration and compression. Inferring latent states is really 
about understanding where you are in an abstract space. In the 
two-room task43, the global grid code uniquely identifies physical 
locations. For spatial alternation tasks, ‘splitter’ cells identify location 
in physical space and location in left/right trials. Working out where 
you are in physical space is easy; accumulate self-movement vectors 
(for example, North, South, East and West from head direc-
tion cells46) to update your location: this is path integration47 (Box 3 
figure). Ants, rodents, birds and humans all use path integration48–50,  

Box 3: Path-integrating state-spaces

Path integration offers a powerful way to build latent state-spaces. 
It builds maps that embed knowledge of the structure of the space 
(in physical space, North + East + South + West = 0; see the 
figure, a–c). This means that path-integration maps are: (1) in-
herently latent (and abstract), since they follow rules, not sensory 
observations and (2) allow relational knowledge to be transferred 
to any situations where the same rules apply. Notably, although 
path integration is not limited to space, not all graphs can use path 
integration.

Path-integrating models utilize a particular type of recurrent 
neural network (RNN) known as continuous attractor neural 
networks (CANNs139; see the figure, b), where neurons are 
recurrently connected via weights, W, and receive velocity input, 
a. The neural dynamics are given by:

τ
dg
dt = −g+ f (Wg+ Ba)

Here, τ is the time constant of neuronal response, f is 
a nonlinear activation function, g is a vector of cells to be 
path-integrated, and B is a matrix projecting velocity inputs, a, 
to cells, g. We note an alternative, but less biologically plausible, 
equation is τ

dg
dt = −g+ f (Wag), where the recurrent matrix Wa 

depends on the movement velocity. With an appropriate set of 
weights, CANNs use path integration, with different cell classes 
(head direction cells139,140, place cells141,142 and grid cells143; see the 
figure, d) modeled with different weights. Remarkably, CANNs 
really exist in nature; ring attractors144, both in connections and 
anatomy, are found in flies145, and attractor manifolds are found 
in rodents59,146.

Other path-integrating models exist84,85. For example, 
velocity-coupled oscillators (VCOs) suggest path integration 

(along an axis) via interference between theta oscillations and 
velocity-dependent dendritic oscillations, with their phase 
difference indicating path-integrated distance along an axis (this 
looks like a plane wave!). Here, grid cells are the sum of three such 
neurons with preferred axes at π

3 relative angles.
One major limitation of CANNs and VCOs, however, is that 

the weights of the recurrent weight matrix, W, are carefully 
selected and not learned from sensory experience. However, it 
is easy enough to set up path integration as a learning problem  
via predicting observations x: use path integration of the latent 
state variable z and then predict observations x from the latent 
states:

p (X,Z | A) = p (z0)
∏

t
p (xt | zt) p (zt | zt−1, at)

Where the path-integrating part (p (zt|zt−1, at)) is now replaced 
by a discrete-time version, that is, zt = f (Wzt−1 + Ba) + noise. In 
fact, several models use a deterministic RNN (that is, set the noise 
term to 0). These models successfully learn to use path integration 
when tasked with predicting ground truth spatial representations, 
that is, x is either place cells78, or x and y coordinates147. Neural 
units in both models form periodic representations (see the fig-
ure, e and f), but these are often amorphous, fourfold symmetric 
grids. An elegant analytic result148, however, demonstrated that the 
four- to six-fold symmetry transition is governed by a single prop-
erty: a third-order regularization term of grid cells. Indeed, this is 
easily implemented by the biological constraint of ensuring neural 
activity is positive79,148. Reproduced from ref. 143 under a Creative 
Commons license CC BY 4.0 (d). Reproduced with permission 
from ref. 78, Springer Nature Limited (e). Reproduced with per-
mission from ref. 148 (f).

fedc
Neural space

ba
Physical space

Nature Neuroscience | VOL 25 | October 2022 | 1257–1272 | www.nature.com/natureneuroscience 1261

http://www.nature.com/natureneuroscience


Review Article NaTuRe NeuRoscIence

and in mammals this relies on the hippocampal formation51. 
Entorhinal grid cells are an attractive substrate for two-dimensional 
(2D) path integration because they extend to all locations, are error 

correcting52, require far fewer cells to represent location than place 
cells53 and are experimentally driven more from path-integration 
signals than place cells54. Indeed, when neural network models are 

Box 4: Generalizing with memories

We have seen models that build latent state representations, and 
models that use path integration. If these principles could be 
combined, we could build a powerful system that learns arbitrary 
latent states from sensory observations (like CSCG74) but addi-
tionally generalizes these representations (like path-integration 
models78,143) and composes them arbitrarily. For abstract repre-
sentations to be reused (generalized) in different sensory envi-
ronments, the same abstract locations must be ‘linked’ to differ-
ent sensory observations. Hippocampal memories offer the ideal 
substrate for this link; they can rapidly tie sensory observations to 
specific locations.

Hippocampal models of generalization (the Tolman–
Eichenbaum machine, TEM61, and the spatial memory pipeline, 
SMP75) are tasked with predicting, as fast as possible, sensory 
observations in novel, but structurally similar, environments 
(for example, multiple different families or 2D worlds; Fig. 1g). 
Both models consist of two key components: (1) an abstract 
path-integration module that is reusable across environments, and 
(2) a relational memory2 module that, like an address book, links 
abstract location representations with sensory representations (see 
the figure, a). These links change from world to world, allowing 
the same abstractions to apply to multiple worlds.

Recall the probabilistic interpretation of path integration:

p (X,Z | A) = p (z0)
∏

t
p (xt | zt) p (zt|zt−1, at)

Previously, p (zt | zt−1, at) was fixed and each abstract location 
z could only predict a single sensory observation x. If, instead, we 
had an address book of relational memories M, we could remember 
what is where in each environment. To predict upcoming sensory 
observations, all that is required is to imagine a transition in 
abstract representation (z, via path integration), then retrieve the 
memory at that location (‘what’ did I see the last time I was ‘here’). 
Sensory prediction is now a combination of path integration and 
memory retrieval. But what space are we using path integration in, 
and how does it get built? Previously, the weights, W, in the path 
integrator ( p (zt|zt−1, at), where zt = f (Wzt−1 + Ba) + noise) 

were built from predicting x and y coordinates or place cells (that 
is, spatially curated representations). Now, we can predict actual 
sensory observations. This is more powerful. When sensory 
objects are arranged in space, the same spatial path-integration 
mechanism as previous models will be learned, but when the 
sensory world has more complex dependencies, these will also be 
learnt. If the best way to predict the sensory future is to learn a 
complex map of latent states, then these models will learn to use 
path integration in this latent space (Fig. 2).

Although TEM and SMP are conceptually the same 
model, they have different implementations. Two critical ones  
are that (1) TEM is supplied with allocentric actions and object 
representations, but SMP must infer them from egocentric  
input and pixels, and (2) SMP implements memory with a 
memory network from machine learning149, whereas TEM uses 
more biologically realistic Hebbian learning150 and Hopfield 
networks151. This biological constraint means that the link 
between the abstract and sensory worlds must take place in 
neuronal units; that is, the same hippocampal neurons must 
know both the abstract location and the sensory prediction. This 
type of conjunctive representation is commonly observed real 
in hippocampal neurons42,152. In TEM, this conjunction enables 
generalization via hippocampal remapping55–57, as the same 
cortical representations (LEC and MEC) are reused in different 
environments, facilitated by different hippocampal combinations 
(see the figure, b).

TEM and SMP are deep artificial neural networks that learn 
to generalize structural knowledge and recapitulate a host of 
known representations of the hippocampal cognitive map in doing 
so (see the figure, c and d; TEM/SMP). Since SMP works from 
egocentric inputs, it generates cells involved in the egocentric to 
allocentric coordinate transformation66. Additionally, TEM learns 
compositional entorhinal representations in spatial and nonspatial 
tasks, and can solve classical relational memory tasks that are 
crucially dependent on the hippocampal formation, such as 
transitive inference39,153. Reproduced from ref. 61 under a Creative 
Commons license CC BY 4.0 (c). Reproduced with permission 
from ref. 75 (d).
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trained to perform path integration, they learn grid cell representa-
tions as their substrate of 2D navigation (Box 3).

Path integrating in graphs and non-space requires a modifica-
tion. Rather than accumulating self-movement vectors, accumulate 
abstract-movement vectors instead (Parent, Child, Sibling, 
Aunt, Nephew, and so on, for family tree graphs). Just like x 
and y coordinates versus unique identifying representations for 
space, with graph representations that use path integration (ver-
sus representing every connection separately), adding a new node 
(Chloe is Bob’s Sibling) implies other connections (Chloe is 
Alice’s Grandchild) without needing to be told them. This is 
because path integration treats all nodes equally and exploits rela-
tional structure, for example, Sibling + Grandparent = Gr
andparent; take the ‘sibling’ then the ‘grandparent’ action, also 
known as your sibling’s grandparent, which is also your grandpar-
ent. With path integration you only need to know a few rules rather 
than every possible relationship; path integration is a compressed 
representation.

However, not all graphs can use path integration, as it requires 
the same actions, with the same consequences, to be possible at 
every location. Consistent actions do not always exist across graphs. 
For example, on a random graph, relating the connection between 
nodes 1 and 10 to the connection between nodes 10 and 19 likely 
makes no sense because there is no common meaning of ‘this 
action’ + ‘that action’ = ‘some other action’. The best you can do is 
‘take the link from 1 to 10’ then ‘take the link from 10 to 19’. These 
links have no deeper meaning than the nodes they connect. This is 
unlike physical space, or families, where East, or Parent, always 
has a meaning.

Generalization. Generalization, or the transfer of knowledge 
between situations, underlies behavioral flexibility. Without it, new 
situations cannot be understood in the context of existing knowl-
edge and previously learned behaviors cannot be leveraged. Sensory 
generalization lets you understand that a Pekingese is a type of 
dog, whereas structural generalization enables deep and power-
ful inferences: doors often lead to new rooms; addition works for 
100 s as it does for 10 s; the same path-integration rules apply in 
different rooms. These pieces of knowledge have profound effects  
on behavior.

However, generalizing with graphs is difficult as they require 
perfect alignment across situations. Perfect alignment is a 
non-deterministic polynomial-time (NP)-hard problem, which 
means that the problem is extremely computationally inten-
sive and essentially impractical. By contrast, generalizing with 
path-integration representations is easy because all positions are 
treated equally; representations corresponding to the bottom-right 
in one environment could equally represent the middle of another 
environment. Furthermore, as path-integration maps are latent 
(and thus abstract), they chart the relational structure of one family 
just as well as for another: generalization of relational knowledge.

The hippocampal formation is critical for generalization, as 
well as for memory, and some forms of imagination1,2,5. However, 
hippocampal representations do not generalize; neighboring  
place fields are not necessarily neighbors in other environments 
(remapping55–57; Fig. 1c). By contrast, entorhinal representations 
do generalize; neighboring grid cells (within-module) are also 
neighbors in other environments even though the overall map can  
be shifted and/or rotated (realignment58,59). Spatial generaliza-
tion, at least, exists in the entorhinal cortex and is consistent with  
path integration.

Learning to generalize is often a sequence-learning problem, 
but with sequences from many different environments (Fig. 1g). 
When encountering a new family, after observing that Daniel is 
Emily’s parent, and Fran is Daniel’s sibling, it is only possible to 
predict Fran’s niece (Emily) if you already know (and generalize) 

relational knowledge: Parent + Sibling + Niece = 0. This is 
a sequence because actions (for example, Parent) are added in 
order and transitions return you to the starting location (Emily) by 
path integration.

To actually make sensory predictions, you need to know not 
just abstract knowledge but also how it interacts with real-world 
representations (an abstract family tree location may interact (cor-
respond) with Emily for one family, and Chris for another; Box 4, 
figure a). One influential proposal is that hippocampal cells reflect 
this interaction, with abstract knowledge from medial entorhi-
nal cortex (MEC) and sensory knowledge from lateral entorhinal 
cortex (LEC) combined in the hippocampus9,60,61. This bridges the 
abstract-to-real divide and permits generalization, since the same 
abstract map (MEC) can be reused across different sensory (LEC) 
environments and contexts. Two models that generalize this way are 
discussed in Box 4.

Composition. Generalization does not always mean transferring a 
whole map to a new environment; often sub-components, or com-
binations of sub-components, can be generalized. For example, dif-
ferently shaped rooms can be understood with two components: an 
underlying 2D space and walls that can be placed anywhere. Should 
the cognitive map represent such common structural elements 
across tasks, then these elements can be composed to understand 
any given task configuration38,61,62. To encourage arbitrary compo-
sition, different structural elements (bases) should be represented 
independently (factorized) from one another9. Understanding a task 
then becomes a structural inference problem; finding the appropri-
ate bases to represent the current task63.

The hippocampal formation’s cognitive map contains many 
basis representations (Fig. 1a,c). Object-vector cells64 (OVCs), 
border-vector cells65–69 (BVCs), reward cells70 and goal-vector cells71 
(GVCs) are all examples of local basis representations that encode 
any object/border/goal, irrespective of its location. By contrast, grid 
cells are examples of global bases, as they describe information 
equally across all space. The models discussed in Box 4 learn these 
compositional cell representations to aid generalization.

New interpretations, integrations and predictions
Although the reviewed models account for a variety of cellular 
data from spatial and nonspatial tasks, they often do so in differ-
ent ways. Here we integrate these ideas, leading to a deeper under-
standing of cognitive maps and new accounts of several other neural 
phenomena.

Nonspatial hippocampal cells are latent state representations 
for generalization. Many nonspatial hippocampal representations 
have been observed16,40,41,45,72. Although these cells seemingly rep-
resent tasks differently, they can be unified as representing latent 
state-spaces. We have argued that latent state representations sepa-
rate states with different futures but also enable generalization, 
because latent maps can be reused. However, to generalize as fast as 
possible, every level of abstraction must be represented simultane-
ously; space in spatial tasks, non-space in nonspatial tasks, and both 
in interacting spatial–nonspatial tasks.

For example, consider spatial alternation tasks40,41 where  
animals cycle left → right → left → right · ·· at a choice point  
(Fig. 2a). This task can be ‘unrolled’ into a ‘big-loop’ state-space 
where the first half is going left and the second is going right. This 
is a latent state-space for the task; it de-aliases the common ‘trunk’ 
section depending on whether the animal is going left or right. 
However, this ‘big-loop’ ignores space; it does not know you’re at the 
same physical location on return to the common trunk. To do this, 
space must also be represented and generalized. Indeed, hippocam-
pal cells in this task code for both space (place cells) and big-loop 
(splitter cells)40.
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Fig. 2 | Representing latent states. Many apparently different neural phenomena are captured with a unifying computational principle; building state-spaces 
that can accurately predict different futures (latent states) as fast as possible (generalization). a–e, For each row, left/center-left are the task and its latent 
state-space (with colors denoting sensory experience), whereas center-right/right are real/TEM neural representations. a, In a T-maze task40, where animals 
alternate left/right turns, the state-space is described by a ‘big-loop’ latent space, since the central trunk predicts different futures depending on a previous 
left/right turn. Hippocampal cells represent both space (place cells) and the ‘big-loop’ (splitter cells). Splitter cells are dependent on trajectory, firing at the 
same spatial location (central trunk) differentially depending on the prospective future (left/right). TEM learns both spatial (place) and nonspatial (splitter) 
cells when trained on this task; splitter cells to represent latent state in the ‘big-loop’ and place cells to represent physical location, and thus facilitate 
spatial generalization. Adapted with permission from ref. 40, Elsevier. b,c, More complicated spatial alternation tasks41,44 are also described with ‘big-loop’ 
latent state-spaces. Both real and TEM hippocampal representations contain spatial (place) and nonspatial (trajectory-dependent) cell representations. 
Adapted with permission from ref. 41, Elsevier (b). Adapted from ref. 44 under a Creative Commons license CC BY 4.0 (c). d, Performing four laps to receive 
a reward is a nonspatial task45. It is also described as a ‘big-loop’ latent state-space. Rodent hippocampus, and TEM, represent both space (place cells; top) 
and non-space (lap-specific cells; middle/bottom). Adapted with permission from ref. 45, Springer Nature America, Inc. e, A T-maze task where rodents 
choose left/right depending on sensory evidence (as the animal moves along the central trunk) has a latent state-space spanned by position and evidence. 
Hippocampal cells, and TEM learned hippocampal representations, map this position-evidence latent space that is not just spatial location (bottom-right, a 
collection of many different cells representations). Adapted with permission from ref. 16, Springer Nature Limited. Code for simulations is available at https://
github.com/djcrw/generalising-structural-knowledge. Further learned cell representations are shown in Supplementary Figs. 1 and 2.
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Here we show many nonspatial tasks16,40,41,45,72 can be understood 
by these two principles alone (latent states for disambiguation and 
generalization). We use the TEM, because it learns and generalizes 
latent states at multiple levels of abstraction. First, training TEM on 
spatial alternation tasks40,41,72 (Fig. 2a–c), TEM recapitulates both 
splitter and place cells—splitter cells for the ‘big-loop’ and place 
cells for spatial generalization. Second, when rodents are rewarded 
every four laps of a loop, hippocampus contains both spatial place 
cells, and nonspatial cells that care about which lap45. TEM learns 
the same cells: lap cells for the ‘big-loop’ and place cells for spatial 

generalization (Fig. 2d). Last, when animals make left/right choices 
on a T-maze depending on the relative number of left/right sensory 
cues (Fig. 2e), hippocampal cells form an abstract map spanned by 
physical space and cue difference (‘evidence’). TEM learns exactly 
this; physical space to predict choice, and cue difference to predict 
reward left/right.

Complementary maps in hippocampus and cortex. The reviewed 
models mirror an old debate in cognitive mapping: is the hippo-
campus building maps3 or memories1,73? In particular, some models 
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a map, that is, connections between hippocampal cells encode relationships between states, and (2) memories linking cortical map representations. a, 
We suggest the hippocampus serves both roles, but does so in different situations. In experiences where no previous cortical map is useful, hippocampal 
representations build a relational map; in familiar experiences where the cortex has learned how to structure experience (for example, by path integration), 
the hippocampus fulfils the role of memory. We suggest that with increasing experience, there is a transition from the hippocampus as a map to memory, 
and this will be tied to the behavioral ability to generalize (via cortex). b, TEM (HPC as memories) and CSCG (HPC as map) models can be easily 
integrated (as both are formalized probabilistically) into a model with a hippocampus that can form both maps and memories. c–e, State-spaces for 
behavior. c, Learned latent state-spaces can be inputted to RL algorithms such as the SR. d, On the other hand, compositional representations, such as 
GVCs, permit rapid generalization of policy. Because these representations already generalize to novel goals in novel environments, all that is required 
is a pre-computed set of values (or policies) associated with the GVCs. The value map (or policy) is simply transferred along with the GVCs: credit 
assignment through generalization. e, Replay might play a role in this mechanism. After encountering a goal, we want the goal-vector representations to 
exist across all of space, and especially any start locations. Replay trajectories provide an offline solution; path-integrate (offline) GVCs and bind them 
(via memory) to important locations such as the start state. Thus, when reentering the same environment, vector representations and the associated 
value map (or policy) already exist. This is replay as the offline building of maps for credit assignment through generalization. f, The aforementioned 
mechanisms rely on compositional representations, and in particular factorized representations (those that can be linearly de-mixed). Sometimes, 
however, brain representations are not compositional, but entangled97. Since compositional representations are beneficial for generalization, we suggest 
animals have factorized or entangled representations depending on the pressure to generalize; regularly staying in the same task will encourage entangled 
representations, whereas regularly switching tasks will encourage factorized representations.
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(for example, SR and CSCG) propose that the hippocampus stores 
the map with its neurons representing state/location; other models 
(for example, TEM and SMP) propose that the entorhinal cortex 
(or other cortical areas) represent the map, and the hippocampus 
binds map locations to real-world experiences via memories. These 
models are not just conceptually different, they are functionally 
different. ‘Hippocampus-as-a-map’ models (SR and CSCG37,38,74) 
quickly learn any map but the maps do not generalize, whereas 
‘hippocampus-as-memory and cortex-as-a-map’ models (TEM 
and SMP;61,75) slowly learn the cortical map but, when learned, can 
immediately generalize it.

We suggest the hippocampus might combine these functional 
elements. This is profitable as the hippocampus can provide a usable 
state-space for each environment (successor representation (SR)/
CSCG) before the cortex has learned a generalizable map (SMP/
TEM; Fig. 3a). Furthermore, the hippocampal maps expedite corti-
cal learning since they can be replayed to the cortex offline, and pro-
vide higher-fidelity training signals than observations alone because 
they are de-aliased. This integrated approach could be formulated 
as a TEM/SMP model, but one in which the hippocampus is predic-
tive of future hippocampal states (Fig. 3b).

Cognitive maps and behavior. The discussed models relate to 
behavior in different ways. Models formulated using RL (SR and 
default representation (DR)37,38) provide a state-space for model-free 
and model-based learning, and suggest the hippocampus constructs 
a predictive cognitive map for RL36,37. Because these models only 
require well-separated state-space as input, any model that con-
structs such state-spaces could act as input (for example, CSCG, or 
TEM, hippocampal cells can input to the SR; Fig. 3c). The sequen-
tial models offer an alternative to tree search in ‘planning by infer-
ence’76,77. This involves conditioning on start and goal states, then 
inferring a distribution over action/state sequences. For example, 
CSCG is a Bayesian model that naturally implements this proce-
dure, thereby suggesting a hippocampal role in action inference. The 
models that learn grid codes can use vector-based planning33,75,78. 
This enables navigation and short-cutting behaviors reminiscent of 
animal behaviors, while also transferring policies from one environ-
ment to another because grid cells generalize.

The observation that grid cells resemble eigenvectors of the spa-
tial transition matrix37 (or of place cells79) has led to interesting sug-
gestions about mechanisms for planning and exploration. This is 
because the eigenvectors for one-step, two-step and multi-step tran-
sitions are all the same. They are the same for the SR too. Only the 
relative weighting (eigenvalues) of eigenvectors change. Intuitively, 
this means the same eigenvectors can be used for exploration, plan-
ning, sampling in replay, or any other type of multi-step navigation. 
Indeed, with bespoke eigenvalue weightings, very different strate-
gies emerge80, such as turbulence or super-diffusion (Lévy flights), 
and can be seen in rodent hippocampal replay81. Conveniently, with 
the SR weighting of eigenvalues, all you need for planning is the 
start and goal grid codes82.

So far we have considered diffusive transition matrices (matri-
ces without actions). However, by making transition matrices 
dependent on action, we can play games like path integration. For 
instance, recasting individual actions as transition matrices, such 
that sequentially applying the North, West, South and East 
transition matrices returns you to the starting point. In space, at 
least, these transition matrices have the same eigenvectors, but dif-
ferent (complex) eigenvalues. Hence, path integration is reduced to 
successively adding the eigenvalues associated with each action83. 
This unifies path integration with SR-like planning. Interestingly, 
it also unifies models of path integration since the eigenvectors are 
plane waves (not grids as the transitions are unidirectional) just like 
those required for VCOs84,85, and the transition matrix is just like the 
weight matrices required for CANNs86.

Credit assignment through generalization and the interplay 
with striatal reinforcement learning. Credit assignment is the 
attribution of value to state. RL typically assumes the underlying 
state-space is fixed, and values are slowly assigned to these states. 
However, there is no requirement for state representations to be 
fixed; they can change to better represent value. For example, after 
encountering a goal, GVCs form71 (cells that are active at certain dis-
tances and directions from goals; Fig. 3d). This can be interpreted as 
augmenting the state representation (with new cells). Importantly, 
since GVCs use path integration, once discovering a goal, all  
GVCs can be built as the animal navigates. Although GVCs have 
only been recorded in bats71, we hypothesize they play a general role 
across species.

We propose building state-space, s, compositionally from reus-
able building blocks (for example, OVCs, GVCs, BVCs and grid 
cells that generalize within and across environments) dramatically 
helps behavior. Intuitively, this is because the compositional repre-
sentations can come ‘pre-credit assigned’, and thus immediately pro-
vide a state-space that accurately predicts value (or policy) in novel 
situations. This is understood with a little formalism. RL says values 
(or actions) are a function of state—f(s). Thus, to get new behaviors 
in new situations, you can either change the function, f, or change 
your state, s. In general, there is no fast or efficient way to change the 
f (Bellman updates and gradient descent are slow, whereas explicit 
planning is highly computationally costly). However, the state, s, can 
be adjusted rapidly, for example, by addition of vector cells (GVCs, 
BVCs and OVCs), and the function f can stay the same. f just needs 
to be general and work with many different state combinations; f 
‘pre-credit assigns’ the compositional representations. This is easy 
to learn; just train over many different combinations of vector cells 
and goal locations!

For example, in an open-field task with changing goal locations, 
all that’s required is learning a function f([GVCs]), and then appro-
priately placing the GVC representation in the right place (centered 
around the goal; Fig. 3d). Things are less intuitive in environments 
with multiple objects and boundaries, but the idea is the same,  
only now other local bases may be required, for example f([GVCs, 
OVCs, BVCs, ...]). The only online role of the cognitive map is infer-
ring which pre-learned and pre-credit assigned representations to 
compose together. This is credit assignment through generaliza-
tion, and is akin to meta-RL87, as previous statistical knowledge (for 
example, GVCs, BVCs and OVCs) can be integrated on the fly to 
solve novel tasks.

Where do these representations come from in the first place? 
The cognitive map models suggest these representations are learned 
from statistics of behavior. Just as OVCs can be learned when behav-
ior is biased toward objects61, GVCs can be learned when behavior 
is biased toward goals. In general, cortex must learn from sequences 
of behavior. This suggests an interplay of learning between general-
ization and RL. In entirely novel tasks, when the agent has a naive 
state-space, behavior is learned via classic RL (perhaps in striatum). 
Initial actions will be bad, but eventually RL will learn policies 
toward goals. These behavioral sequences can be replayed to the 
cortico-hippocampal system, which extracts statistics and learns 
a better state-space (for example, compositional representations; 
GVCs, BVCs, OVCs) from these policies. This is a virtuous cycle; 
learned cortical representations can be provided back to striatum as 
an RL state-space, which can then learn better policies, and so on. 
When cortical representations are good, behavior can be generated 
entirely from generalization, with no need for new striatal RL. This 
relates to recent machine learning methods in offline RL, where 
sequence models learn the statistics of behavioral sequences from 
conventional RL algorithms, after which the sequence model can 
be used for planning88,89. In sum, this proposal offers a new role of 
cortical–basal ganglia interaction for constructing RL state-spaces 
and generalizing policies.
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Fig. 4 | Representing time and hierarchies of abstraction in cognitive maps. a,b, Neuronal representations of time might structure tasks according to 
‘progress’ through that task. a, In a task with a delay period, the full (b) latent state-space of the task includes the delay period, as ‘progress’ through the 
delay must be represented to predict when the delay period ends: in essence, latent states for predicting the future. Indeed, sequences of hippocampal 
cells fire during the delay period as if they were coding time103,104. Reproduced from ref. 128, Society of Neuroscience. c, Time additionally impacts 
representations via drift99. Here, hippocampal (and other) representations slowly change over many days, such that an entirely different representation 
encodes the same location. Reproduced with permission from ref. 99, Springer Nature America, Inc. d, Although the mechanism, or function, of drift is 
unknown, a tantalizing possibility, inspired by the reviewed models, is that representational drift is remapping in disguise. In particular, as in TEM, if 
hippocampal representations reflect a triple conjunction of space, sensory stimuli and time, then drifting hippocampal representations can parsimoniously 
be due to changing time representation while space and sensory representations remain the same. Rather than spatial remapping (Box 4, figure b), 
this is temporal remapping. e,f, Representing hierarchical tasks. e, Schematic of a hierarchical version of TEM, where an additional prefrontal module is 
included. Should this module represent location in task at an abstracted level (for example, ‘just before the oven’ in a recipe), this abstract and nonspatial 
representation can contextualize the hippocampal–entorhinal system, that is, set goals in space. We note that this schematic is a simplification of 
true neuroanatomy (for example, medial PFC (mPFC) and hippocampus connections may go via the reuniens). f, This predicts new cell types, such as 
route-dependent GVCs: representations that point toward goal locations but only at specific points in the task (for example, only before chopping the 
vegetables). This is analogous to splitter cells, although these representations can occur anywhere in space, not just at specific points on a T-maze. Icons 
are from https://www.flaticon.com.
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Replay: offline state-space construction. If behavioral control in new 
worlds is reduced to state-space composition, it becomes important 
to construct state-spaces rapidly and accurately, and to store them in 
memory so they can inform future decisions. To build such memo-
ries requires path integration (for example, to ensure the correct 
GVC is tied (composed) to the correct location) but, to be efficient, 
as much of the compositions as possible should be done offline (that 
is, not using path integration for the animal’s actual location).

An appealing substrate for this composition is replay90. For 
example, when an animal receives a reward, it is important that 
all other states are aware of their relative location to the reward. 
Replay can use path integration away from the reward, successively 
tying (composing) each new GVC to its respective hippocampal/
cortical location (perhaps building landmark cells in the hippo-
campus91; this is a similar mechanism to the simultaneous grid and 
place cell replay from Evans and Burgess92, but now used to instan-
tiate rewarding policies, instead of ensuring consistency between 
place and grid representations). Now, should the animal return to 
a state, the state representation already ‘knows’ about its relation 
to reward (Fig. 3e). It is no longer necessary to hold all goal loca-
tions in mind, as the state-space composition is stored in memory. 
All heavy computations of building state-spaces take place offline, 
thus the computational burden is reduced for online behavior. This 
relates to ideas from RL that cast replay as a mechanism for optimal 
credit assignment to existing states93, or a mechanism for building 
state-spaces from scratch27,94. However, in a generalization frame-
work (outlined in the section above), these two computational pro-
cesses are subsumed by the single process of composing state-spaces 
from pre-learnt bases. Notably, this framework makes predictions 
not only about optimal patterns of hippocampal replay, but also if 
and when these patterns will align with replay of more abstract rep-
resentations in entorhinal and frontal cortices95,96.

When neural representations factorize. Grid cells were once 
thought of as representations of space and space alone. By appar-
ently ignoring sensory (or other nonspatial) details of an environ-
ment, grid cells were considered a factorized representation of 
space. Similarly, other spatial representations found in the ento-
rhinal cortex, such as OVCs and BVCs, are seemingly factorized, 
since they compositionally augment the entorhinal grid representa-
tion to represent different environmental configurations; however, 
recent evidence has shown that grid cells warp toward consistently 
rewarded locations97. Factorized representations should not warp, 
since warping is an environment-specific phenomenon; warping 
around rewards does not transfer to different spatial configurations 
of rewards.

We suggest a tension between warping and not warping due to 
the pressure to generalize versus precisely representing a single task 
(Fig. 3f). With infrequent task switches (that is, repetitively solving 
a task), it is more efficient to learn and store a bespoke warped rep-
resentation (warped since the animal performs stereotyped looping 
behaviors in space), as generalization is not necessary and storing 
one representation is more efficient than combining many. With 
regular task switches (for example, solving different goal configura-
tions of the same task), the pressure for generalization is high, and 
so compositional bases are favorable. This idea can be stated suc-
cinctly: when the set of tasks that an animal faces is itself factorized, 
then cellular representations for that task will also be factorized 
(made up of compositional bases; Fig. 3f). This hypothesis makes 
simple and falsifiable predictions in spatial tasks with environmen-
tal rewards: when rewards and space regularly occur in any combi-
nation (factorized), both representations of space (grid cells) and 
reward (reward-vector cells) will exist. By contrast, when rewards 
and space always occur in the same combination, a bespoke, warped 
representation will suffice. We note early evidence that these task 
demands lead to factorized98 and warped97 representations.

Open questions
The role of time in memory and cognitive maps. The discussion 
of cognitive map models so far assumes that learned representations 
remain stable over time. This clearly cannot be the case, since we 
can remember events at the same place and same conditions but 
on different days. Empirical evidence indeed indicates that neural 
representations drift over time and experience (Fig. 4c), challenging 
traditional notions of engrams and receptive fields99–102.

But how can the hippocampus maintain a stable representa-
tion of space if the cellular basis of this representation drifts? 
Generalization models offer a solution: hippocampal cells bind 
multiple factors together, thus only one factor needs to change for 
the entire representation to change (Fig. 4d). If entorhinal cortex 
learns abstracted representations of time as well as space, then, as 
the temporal code progresses, the hippocampal code will drift to 
new cells, but these new cells will only differ in their connections 
to the entorhinal cells that represent time, not those that represent 
space (Fig. 4d). In this view, representational drift is just hippocam-
pal remapping, but where time has changed, not sensory observa-
tions or space. A prediction that follows is that the order of drifting 
cells is not random.

The hippocampus represents time through more than just drift. 
For example, pure ‘time cells’ emerge when rodents are required to 
stay still, or run on a wheel, for a particular duration (Fig. 4a)103,104. 
These cells can be understood as enabling prediction of when the 
delay period finishes (Fig. 4b). Crucially, this temporal representa-
tion is just one part of an overall map relating experiences to one 
another. More precisely, during the delay period, space is not chang-
ing, but position in task is changing. Cognitive map models suggest 
it is the overall task position that is being represented in ‘time cells’.

Interacting levels of abstraction. We have shown how models can 
build abstract representations that generalize over different sen-
sory realizations, but the real power of abstraction comes when this 
process happens repeatedly, so that abstractions can lead to further 
abstractions. When we are learning to cook a new recipe, we don’t 
need to relearn the rules of space to find the oven, and when the 
recipe is learnt it can easily be transferred to kitchens with new spa-
tial layouts.

The latent state tasks discussed earlier (Fig. 2), had both task 
(‘go left then right’) and space elements, but these came in a fixed 
configuration; the latent space would not have generalized if the 
T-maze became a W-maze. Cooking recipes in different kitchens 
is equivalent to a switch from T-maze to W-maze; we need some-
thing new in the models to account for this. One attractive option is 
for spatial and task representations to be separately represented, or 
‘factorized’, so they can be arbitrarily combined (ovens being in dif-
ferent locations in different kitchens). Given enough experiences 
of different kitchens, this factorization could emerge from train-
ing. However, using the same tricks as before (the hippocampus 
as a mediator of factorized representations), the required number 
of recipes and kitchens for training can be dramatically reduced. 
One possibility is that the different representations observed in 
frontotemporal cortices105–110 might reflect such a factorization, 
with entorhinal representations grounded in interactions with the 
physical environment, and neurons in the prefrontal cortex (PFC) 
representing abstract, task-related invariances, such as ‘location in 
task’30,96,105,110–112.

Although factorization allows representation of any space–task 
combination, these representations must interact to actually under-
stand any given space–task combination. The go-to-oven medial 
PFC representation needs to be linked to the spatial location of the 
oven, or vector cells pointing toward the oven, to actually navigate 
to the oven. This linking could occur through hippocampal memo-
ries (Fig. 4e). Interestingly, the same vector cells can be reused to 
point toward the oven or the chopping board. This makes a predic-
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tion: contextually modulated107 vector cells depending on ‘location 
in task’ (Fig. 4f).

Building models of interacting task and spatial representations, 
with principles of abstraction, generalization and path integration, 
allows neural representations from RL tasks to be understood in the 
same language as space. As emergent task-level (medial PFC) repre-
sentations potentially reveal insights into how cells might represent 
task structure itself, they will be of interest whenever animals are 
shaped to perform tasks.

From sequences to other domains of cognition. The models we 
described translate the problem of building maps into the prob-
lem of understanding the structure of sequences. This raises two 
questions. First, there are many other sequence problems not tradi-
tionally related to cognitive maps; can these can be understood sim-
ilarly to space and tasks113,114? Second, can our understanding from 
sequence problems extend to problems in other cognitive domains?

Regarding the first question, machine learning has shown 
that sequence learners (RNNs, long short-term memory units115, 
Transformers116) can perform well on tasks including language pro-
cessing, mathematical understanding and logic problems117,118. This 
makes sense as these are sequence problems in which generalization 
is key: each comprises content (words/numbers) combined within 
different structures (grammatical rules/mathematical operators) 
and vice versa. Although mathematics and language engage large 
(and different) cortical territories119, the neuronal representations 
that support these functions might be understood with principles 
similar to state representation, factorization and path integration 
described above (indeed, a recent paper showed that hippocampal 
models of generalization are Transformers120). For example, math-
ematical operators, such as addition and subtraction, bear similarity 
to forwards and backwards actions on a line (similarly for integra-
tion and differentiation).

Regarding the second question, much of the neural processing 
underlying cognitive problems does not seemingly require sequence 
transitions. For example, understanding that a football and the 
Earth are both spheres does not require learning from sequences; 
thus, it is not clear whether organizing principles similar to space 
play a role in learning these abstractions. Nevertheless, there are 
analogies between path integration and understanding spheres: 
the data-generative factors of a ball—sizes, shapes and colors—
are all examples of variables that can be projected onto a mani-
fold where ‘actions’ such as add-red, bigger, remove-red, 
then smaller have a meaning. Indeed, machine learning meth-
ods learn such manifolds from images inputted in no particular 
sequence121,122. Some nonsequential problems can also be reformu-
lated sequentially, for example, although an image is not sequen-
tial, it can be viewed sequentially. It is notable that grid-like cells 
have been observed in monkey123 and human124,125 entorhinal cortex 
during saccades on images, and when humans view silhouettes of 
stacked objects, component objects are replayed sequentially126.

Note that we do not claim entorhinal cortex solves and repre-
sents all types of structures (for example, family trees). Other brain 
regions are likely involved in path-integrating structures more 
abstract than physical space, and we posit their interactions with the 
hippocampus obey similar computational principles. However, the 
entorhinal cortex is particularly well placed anatomically to index 
the hippocampus with a rich distributed representation, so even in 
these cases, entorhinal representations may relay the structural rep-
resentations to their hippocampal targets.

Conclusion
The hippocampal formation is a poster child for cognitive neuro-
science because of its beautifully organized neuronal responses and 
the profound effects of its damage. However, although these experi-
mental findings seem self-explanatory when examined in simple 

situations like open-field foraging, they have been hard to relate to 
complex real-world behaviors. Moreover, it is not clear whether the 
discoveries gleaned from navigation studies have broader implica-
tions for understanding more general cognitive processes. By rei-
magining the problem, the ideas and models reviewed here offer 
concrete and formal methods for addressing this. By asking ques-
tions such as ‘what really is space to the brain?’, they have been able 
to make connections between how neurons behave in space and 
how they behave in nonspatial tasks. They provide new computa-
tional explanations for how these processes might support behavior, 
and for the link between space and memory. These contributions 
have relied on a genuine link between theory and experiment, and 
this cross-disciplinary collaboration will continue to increase our 
understanding of how brains make sense of the structure of experi-
ence, and use it to construct flexible behaviors.

Data availability
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Code availability
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