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In the version of this article initially published online, first, a relevant
citation was omitted. To correct this, the sixth sentence of the
introduction, which originally read "one study employed nonthermal
magnetogenetic control of somatic tissues to regulate blood

glucose11, but a genetically encoded, single-component
magnetogenetic system has yet to be applied to the nervous
system," has been rewritten to say "one study employed
nonthermal magnetogenetic control of somatic tissues to regulate

blood glucose11 and another utilized a naturally occurring iron-

containing magnetoreceptor to trigger neuronal activity48, but a
genetically encoded, single-component magnetogenetic system
has yet to be applied to the nervous system of behaving
vertebrates." Ref. 48 is provided as follows: Long, X., Ye, J., Zhao,
D. & Zhang, S.J. Magnetogenetics: remote non-invasive magnetic
activation of neuronal activity with a magnetoreceptor. Sci. Bull.
(Beijing) 60, 2107–2119 (2015). Second, the author contribution
statement incorrectly listed M.P.B as having performed
experiments. This has been corrected to say that M.P.B. provided
conceptual help during the development of the prototype channel.
Finally, the reporter construct in the right panel of Figure 2e was
mislabeled Camk2a::Cre-EGFP. This control construct should have
been labeled Camk2a::EGFP. The errors have been corrected for
the print, PDF and HTML versions of this article.
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Supplementary Figure 1 Model of magnetic activation via Magneto.

(a) The cation channel, TRPV4, is gated by stretch (among other
diverse classes of stimuli), to depolarize cells. For simplicity, only
two of the four homomeric subunits are shown. (b) Coupling ferritin
to the TRPV4 C-terminus converts TRPV4 to a magnetic field
detector. Gating properties were extrapolated from published

descriptions of TRPV1 and TRPA1 gating mechanisms48-50.

48. Cao et al. (2013) Nature 504, 113-118.

49. Liao et al. (2013) Nature 504, 107-112.

50. Paulsen et al. (2015) Nature 520, 511-517.

Supplementary Figure 2 Measurement of electromagnet strength
over distance.

Empirical determination of the strength of several electromagnets
over distance powered by an identical current. Dashed line
represents distance between HEK cells and electromagnet during
calcium imaging assays. A 3 cm diameter magnet was used for all
calcium imaging assays. Δx represents distance between magnet
and cells used in calcium imaging.

Source data

Supplementary Figure 3 In vitro calcium imaging using Magneto1.0.

(a) Mammalian expression vector schematic of Magneto1.0. (b-g)
Representative images of HEK293 cells used for in vitro magnetic
stimulation Fluo-4 calcium imaging. (h) Quantification of relative
calcium fluorescence in response to magnetic stimulation of
mCherry+ cells. Replicates are shown as individual coverslips
equaling n=6 (TRPV4/ferritin), n=8 (Magneto1.0), and n=6
(Magneto1.0+RR). Total cells analyzed for each condition are
n=545 (TRPV4/ferritin), n=565 (Magneto1.0), and n=437
(Magneto1.0+RR). One-way ANOVA, Bonferroni post-test,
(F2,17=7.509, p=0.0046). (i) Representative images of temporal

association between calcium fluorescence and magnetic field
pulses in an individual Magneto1.0-expressing cell (arrow). Field
was pulsed for alternating 10 second periods of on/off. *p<0.05.
Data are shown as mean±SEM.

Source data



Supplementary Figure 4 Optimization of Magneto1.0 by improving

cellular trafficking.

(a-e) HEK293 cells transfected with mCherry-fused variants of
Magneto1.0 with combinations of various inwardly rectifying K+
channel 2.1 (Kir2.1) trafficking signals. (a) Magneto1.0-mCherry
shows diffuse cellular localization, poor membrane expression, and
poor transfection efficiency. (b) Addition of ER export signal from
Kir2.1 to C-terminus of Magneto1.0-mCherry peptide partially
improves Magneto expression. (c) Addition of Kir2.1 membrane
trafficking signal (TS) significantly improves membrane expression
of Magneto. (d) Dual addition of membrane trafficking and ER
export signals improves expression relative to Magneto1.0 but not
relative to a single membrane trafficking signal. (e) Tandem Kir2.1
membrane trafficking/ER export signals on Magneto1.0 C-terminus
improves expression but not relative to c. n=2 coverslips and >100
cells analyzed per trafficking modification examined.

Supplementary Figure 5 Viability of Magneto2.0-transfected

mammalian cells.

(a-d) Viability of Magneto2.0 transfected HEK293 cells several days
post transfection (DPT). Images show bright field and mCherry
fluorescence. Zoom increased in (c-d) to increase single cell
resolution following significant cell division. Images are
representative of n>100 cells examined.

Supplementary Figure 6 Calcium imaging controls using

thapsigargin.

(a) Graph of Fluo-4 fluorescence using HEK293 cells transfected
with Magneto2.0-p2A-mCherry and treated with thapsigargin over a
period of 60 minutes. Arrow indicates addition of 1 μM thapsigargin
to the imaging chamber after a 30 second baseline recording of
calcium fluorescence. Dashed box indicates analysis window for
“thapsigargin” experiments in panel b. n=114 cells analyzed from 3
independent replicates. (b) Time course showing the magnetic
activation of Magneto2.0 expressing cells in the presence and
absence of thapsigargin. All cells from one replicate shown per
condition, n=102 cells (Magnet) and n=52 cells (Thapsigargin). In
the “thapsigargin” condition, cells were pre-treated with 1μM



thapsigargin and calcium imaging was initiated 30 minutes post-
thapsigargin treatment during the window (dashed box) shown in
panel a. (c) Quantification of maximal calcium fluorescence of
HEK293 cells expressing Magneto2.0 and subjected to the above
conditions using Fluo-4 calcium imaging 24 hours post-transfection.
Values shown are the average maximal Fluo-4 fluorescence values
per cell relative to baseline for each condition. Data points are
shown as total cell averages among individual coverslips. n=114
(Thapsigargin) and n=396 (Magnet) cells analyzed from n=3
(Thapsigargin) and n=5 (Magnet) independent replicates. Welch’s
two-tailed unpaired t-test, (t2.882=4.457, p=0.0395). “Magnet” data

are duplicated from Figure 1. *p<0.05. Data shown as mean±SEM.

Source data

Supplementary Figure 7 Control analyses for electrophysiological
characterization of Magneto2.0.

(a) Representative trace showing that injection of depolarizing
current evokes spikes in doubly transduced EGFP+ Magneto2.0
expressing neurons. (b) No change in AP latency between
conditions of current injection or magnetic field application in
transduced neurons (measured from time immediately preceding
depolarization). Unpaired two-tailed t-test, (t22=1.628, p=0.1178)

(threshold), (t22=1.676, p=0.1079) (peak). (c-g) Membrane

properties are unchanged under conditions of either current
injection or magnetic stimulation in hippocampal neurons doubly
transduced with CMV::DIO-Magneto2.0 and CaMKIIα::Cre-EGFP.
Unpaired two-tailed t-test, (t22=0.1926, p=0.8498) in c, (t22=1.335,

p=0.1954) in d, (t22=0.1290, p=0.8985) in e, (t22=1.052, p=0.3042)

in f, (t22=0.4086, p=0.6868) in g. (h) Injection of depolarizing

current evokes APs in Cre-negative DIO-Magneto2.0 transduced
EGFP+ neurons. n=12 neurons analyzed for each condition shown
in (b-g). ns: not significant. Data shown as mean±SEM.

Source data

Supplementary Figure 8 Controls for magnetic stimulation in brain
slice electrophysiology.

(a) Paired traces depicting the onset of action potentials following



current injection (black) and magnetic stimulation (red) for the same
neuron co-transduced with AAVs carrying CaMKIIα::Cre-EGFP and
CMV::DIO-Magneto2.0. Overlay shows a modest delay of action
potential onset (50-100 ms) when neurons are stimulated with static
magnetic fields. (b) Magnified traces of the resting state from three
additional neurons co-transduced with the above viruses. Neurons
are shown immediately prior to action potential initiation as static
magnetic fields are brought more closely to the cells using a
micromanipulator, a process requiring roughly 1 second. Traces do
not show interference coming from ∼50 mT static magnetic fields in
close proximity to the recording apparatus.

Source data

Supplementary Figure 9 Application of Magneto1.0 to zebrafish
behavior in vivo.

(a) Schematic of trans cardiac myosin light chain 2 (cmcl2)::GFP
element and its expression in 24 hpf zebrafish embryos for positive
transgenic selection. n>100 fish examined. (b) Schematic of
Magneto1.0 construct used: Tol2: Tol2 transposon sites; ß-Actin:
promoter; IRES: internal ribosomal entry site; nls-EGFP: nuclear
localized enhanced GFP. (c) Quantification of the number of coils in
WT (uninjected) and ß-actin::Magneto1.0 expressing 24 hpf
zebrafish embryos in response to magnetic stimulation. n=43 WT,
n=25 ß-actin::Magneto1.0 fish. Statistics determined by Chi-

squared analysis, (Chi23=36.51, p<0.0001). (d) Quantification of

coiling rate in WT (uninjected) and ß-actin::Magneto1.0 expressing
zebrafish. Replicates (number of individual fish) shown in columns.
Statistics determined by one-way ANOVA, Bonferroni post-test,
(F3,64=3.89, p=0.0129). ***p<0.001, *p<0.05. Data are shown as

mean±SEM.

Source data

Supplementary Figure 10 Analysis of Magneto2.0 in live zebrafish.

(a) Maximal GCaMP3 calcium fluorescence change of mCherry+
(n=20 from 5 fish) and mCherry- (n=33 from 5 fish) neurons in
response to magnetic field stimulation. Dashed line indicates
average GCaMP3 fluorescence value for mCherry- neurons. (17/20
mCherry+ neurons exceed this fluorescence value). Unpaired two-



tailed t-test, (t51=3.373, p=0.0014). (b) Schematic of behavioral

paradigm for induction of zebrafish coiling behaviors using
magnetic stimulation. (c) Schematic of Rohon-Beard neuron
projections. (d) Magneto2.0 expression construct. Tol2: transposon
site; ngn1: neurogenin-1 promoter; IRES: internal ribosomal entry
site; nls: nuclear localization signal; EGFP: enhanced green
fluorescent protein; polyA: polyadenylation signal. (e-f) In vivo
imaging of Rohon-Beard neuron projections into the skin, n=10 fish
examined per genotype. Inset: Magneto2.0+ (EGFP+/RFP+) and
Magneto2.0- (EGFP–/RFP+) neurons. Data pooled from 2
injections per genotype. **p<0.01. Data shown as mean±SEM.

Source data

Supplementary Figure 11 Mouse behavioral controls.

(a) Quantification of the change in firing rate relative to baseline for
low-frequency and high-frequency firing single units in the striatum
in response to the D1R agonist SKF81297, n=7 (<5 Hz), n=8 (>5
Hz) units examined from one Drd1a::Cre mouse transduced with
CMV::DIO-Magneto2.0, unpaired two-tailed t-test, (t13=2.192,

p=0.0472). (b) Picture of magnetic open field behavioral chamber.
(c) Quantification of change in linear velocity in open field for both
groups (n=6 per genotype), unpaired two-tailed t-test, (t10=0.08856,

p=0.9312). *p<0.05, ns: not significant. Data shown as mean±SEM.

Source data

Supplementary information
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